快捷搜索:

您的位置:金莎娱乐 > 科学 > 窥探宇宙最古远的星河,古老恒星上有化学

窥探宇宙最古远的星河,古老恒星上有化学

发布时间:2019-10-13 07:33编辑:科学浏览(107)

    出品:"SELF格致论道讲坛"公众号

    4月30日,《自然·天文》发布了我国天文学家主导的一项重大发现。中科院国家天文台的科学家们证实了银河系内一颗重元素含量超高的恒星,起源自被银河系瓦解的矮星系。作为发现这个研究的天文学家之一李海宁,她究竟是怎样从古老恒星上寻找宇宙生命密码的呢?

    利用郭守敬望远镜巡天观测数据,形成世界最大的贫金属星亮源表 窥探宇宙最古远的星河

    图片 1

    以下内容来自中国科学院国家天文台副研究员李海宁的演讲实录:

    李海宁

    图片 2

    星空下的郭守敬望远镜。陈颖为摄

    大家好!我是来自国家天文台的李海宁。今天我向大家讲述的是天上的星星告诉我们的关于遥远星光的秘密,以及生命物质起源的故事。

    中国科学院国家天文台副研究员

    星空下的郭守敬望远镜。

    图片 3

    像每一个妈妈一样,我心情不好的时候只要看一眼我的儿子,就会觉得什么都不是事儿了。但是作为一个学天文的妈妈,我在他的身上还能看见一件很奇特的东西,那就是130亿年前的宇宙,你相信吗?

    恒星产生了所有的元素

    陈颖为摄

    138亿年间宇宙化学组成的演化示意图。资料图片

    他的身体里和我们一样,由很多种元素构成,其中最主要的有6种,包括水里面的氢和氧、有机物里的碳、牙齿和骨骼里的钙,以及蛋白质里面的氮,还有给我们细胞供能的磷。

    我是来自国家天文台的李海宁。今天我向大家讲述的是天上的星星告诉我们的关于遥远星光的秘密,以及生命物质起源的故事。

    核心阅读

    浩瀚星河中,有类金属含量极低的恒星——贫金属星,它们如同宇宙的化石,携带了早期的宇宙信息;对它们的研究,被称为恒星考古。

    图片 4

    像每一个妈妈一样,我心情不好的时候只要看一眼我的儿子,就会觉得什么都不是事儿了。但是作为一个学天文的妈妈,我在他的身上还能看见一件很奇特的东西,那就是130亿年前的宇宙,你相信吗?

    浩瀚星河中,有类金属含量极低的恒星——贫金属星,它们如同宇宙的化石,携带了早期的宇宙信息;对它们的研究,被称为恒星考古。

    日前,我国科学家利用郭守敬望远镜的巡天数据,挑选出一万余颗金属含量不到太阳百分之一的贫金属星候选体,形成了目前世界上最大的贫金属星亮源表。这一发现,有利于我国现有地面观测设备进行高分辨率后续观测,也为国内外天文界提供了前所未有的大样本贫金属星。

    别看我的儿子只有2岁,可是他身体里的这些原子,其实已经在宇宙的时空里穿越了百亿年的时间。是不是觉得我在讲一个科幻小说?

    他的身体里和我们一样,由很多种元素构成,其中最主要的有6种,包括水里面的氢和氧、有机物里的碳、牙齿和骨骼里的钙,以及蛋白质里面的氮,还有给我们细胞供能的磷。

    日前,我国科学家利用郭守敬望远镜的巡天数据,挑选出一万余颗金属含量不到太阳百分之一的贫金属星候选体,形成了目前世界上最大的贫金属星亮源表。这一发现,有利于我国现有地面观测设备进行高分辨率后续观测,也为国内外天文界提供了前所未有的大样本贫金属星。

    和考古学家通过地质遗迹探究早期地球文明一样,恒星考古是通过古老的恒星探索早期宇宙。

    故事要从上个世纪40年代开始讲起,那时候的人们只知道大爆炸产生了氢、氦和锂,对于其他元素从何而来一无所知。这个时候一个叫弗雷德·霍伊尔的英国天文学家站了出来,他说:“是恒星产生了所有元素。”他发表了一篇文章,但是在学术界并没有引起多大的关注。

    别看我的儿子只有2岁,可是他身体里的这些原子,其实已经在宇宙的时空里穿越了百亿年的时间。是不是觉得我在讲一个科幻小说?

    和考古学家通过地质遗迹探究早期地球文明一样,恒星考古是通过古老的恒星探索早期宇宙。

    一直以来,全世界恒星考古学家们都致力于在银河系及其邻居星系里寻找最古老的恒星,从而沿着时间回溯,窥探最早的银河系,并尝试再现大爆炸之后的早期宇宙中,恒星和星系是如何形成且演化的。

    图片 5

    故事要从上个世纪40年代开始讲起,那时候的人们只知道大爆炸产生了氢、氦和锂,对于其他元素从何而来一无所知。这个时候一个叫弗雷德·霍伊尔的英国天文学家站了出来,他说:“是恒星产生了所有元素。”他发表了一篇文章,但是在学术界并没有引起多大的关注。

    一直以来,全世界恒星考古学家们都致力于在银河系及其邻居星系里寻找最古老的恒星,从而沿着时间回溯,窥探最早的银河系,并尝试再现大爆炸之后的早期宇宙中,恒星和星系是如何形成且演化的。

    那么,什么样的恒星才是恒星考古者心之所向的古老恒星呢?金属含量特别低的恒星——贫金属星就是。

    于是他找来了三个非常厉害的帮手,这四个科学家努力了好几年的时间,终于在1957年的时候,发表了一篇重要的文章,他们给出了一套完整的恒星如何合成元素的理论。

    图片 6

    那么,什么样的恒星才是恒星考古者心之所向的古老恒星呢?金属含量特别低的恒星——贫金属星就是。

    日前,中国科学院国家天文台赵刚团队利用中国自主设计并建造的郭守敬望远镜的巡天数据,挑选出一万余颗金属含量不到太阳百分之一的贫金属星候选体,形成了目前世界上最大的贫金属星亮源表,相关论文发表在国际期刊《天体物理学报》上。

    恒星的内部就是一个高温、高压的宇宙熔炉,我们在元素周期表上所能看到所有的元素都是在这里产生的。别看这篇文章没有抓人眼球的标题,也不是发表在Nature上,却赢得了诺贝尔物理学奖。

    于是他找来了三个非常厉害的帮手,这四个科学家努力了好几年的时间,终于在1957年的时候,发表了一篇重要的文章,他们给出了一套完整的恒星如何合成元素的理论。

    日前,中国科学院国家天文台赵刚团队利用中国自主设计并建造的郭守敬望远镜的巡天数据,挑选出一万余颗金属含量不到太阳百分之一的贫金属星候选体,形成了目前世界上最大的贫金属星亮源表,相关论文发表在国际期刊《天体物理学报》上。

    金属含量越低的恒星,代表越早的宇宙进化阶段

    虽然很可惜得奖的不是霍伊尔,但是他非主流的观点确实刷新了我们对于宇宙起源的认知。所以现在我们知道了,恒星里的宇宙熔炉从130亿前年就开始生产各种各样的化学元素,那这么多的元素究竟是如何穿越了百亿年,最后来到太阳系进入我们的身体中呢?

    恒星的内部就是一个高温、高压的宇宙熔炉,我们在元素周期表上所能看到所有的元素都是在这里产生的。别看这篇文章没有抓人眼球的标题,也不是发表在Nature上,却赢得了诺贝尔物理学奖。

    金属含量越低的恒星,代表越早的宇宙进化阶段

    “天文学上,我们把一切比氦重的元素都叫做金属,包括碳、氮、氧等平时显而易见的‘非金属’。”赵刚团队成员、中科院国家天文台李海宁说:“这些金属元素不仅在天文学中非常重要,也是生命起源的必要条件。”

    大约在137亿年前,“砰”的一声,宇宙大爆炸了,宇宙爆炸大约3分钟的时间产生了大量的氢、一些氦和极其微量的锂。这锅大爆炸“浓汤”开始冷却,冷却大概到2亿年的时候,宇宙里出现了第一代恒星,它们开始制造新的化学元素。这些恒星非常明亮而庞大,它们用极其壮烈的方式——超新星,结束了自己短暂的一生。

    虽然很可惜得奖的不是霍伊尔,但是他非主流的观点确实刷新了我们对于宇宙起源的认知。所以现在我们知道了,恒星里的宇宙熔炉从130亿前年就开始生产各种各样的化学元素,那这么多的元素究竟是如何穿越了百亿年,最后来到太阳系进入我们的身体中呢?

    “天文学上,我们把一切比氦重的元素都叫做金属,包括碳、氮、氧等平时显而易见的‘非金属’。”赵刚团队成员、中科院国家天文台李海宁说:“这些金属元素不仅在天文学中非常重要,也是生命起源的必要条件。”

    宇宙诞生之初,大爆炸产生了大量的氢、氦和极其微量的锂。在这样的环境下,宇宙中的第一代恒星诞生了。

    而它们所生产的这些化学元素被喷射到四面八方,并且遗传给了下一代恒星。就是这样,一代又一代的恒星,可谓前仆后继,使得我们宇宙当中化学元素的种类和数量不断地增加。直到有一天,恰好能够形成太阳系的生命了,我们就出现了。

    贫金属星出生的时候,宇宙还没有上学

    宇宙诞生之初,大爆炸产生了大量的氢、氦和极其微量的锂。在这样的环境下,宇宙中的第一代恒星诞生了。

    李海宁说:“由于当时只有氢、氦和锂3种化学元素,第一代恒星可以说在出生时是‘零金属’的。此后,在不断成长的过程中,恒星自身又合成了一些新的金属元素。”

    正是因为这样,才有了《魔法炉》里那段十分经典的独白:“为了我们能够活着,数十亿、数百亿乃至数千亿的恒星死去了。我们血液里的铁、我们骨骼里的钙、我们每一次呼吸的氧,所有这些都是从地球诞生很久之前的星星的熔炉里炼制出来的。”

    我们来看一段视频。大约在137亿年前,“砰”的一声,宇宙大爆炸了,宇宙爆炸大约3分钟的时间产生了大量的氢、一些氦和极其微量的锂。这锅大爆炸“浓汤”开始冷却,冷却大概到2亿年的时候,宇宙里出现了第一代恒星,它们开始制造新的化学元素。这些恒星非常明亮而庞大,它们用极其壮烈的方式——超新星,结束了自己短暂的一生。

    李海宁说:“由于当时只有氢、氦和锂3种化学元素,第一代恒星可以说在出生时是‘零金属’的。此后,在不断成长的过程中,恒星自身又合成了一些新的金属元素。”

    第一代恒星大多个头庞大、明亮夺目,在结束短暂一生时,通过超新星爆发将其制造的各种金属元素喷射到四面八方。这些金属元素埋藏在星际尘埃中,孕育出第二代恒星。

    图片 7

    而它们所生产的这些化学元素被喷射到四面八方,并且遗传给了下一代恒星。就是这样,一代又一代的恒星,可谓前仆后继,使得我们宇宙当中化学元素的种类和数量不断地增加。直到有一天,恰好能够形成太阳系的生命了,我们就出现了。

    第一代恒星大多个头庞大、明亮夺目,在结束短暂一生时,通过超新星爆发将其制造的各种金属元素喷射到四面八方。这些金属元素埋藏在星际尘埃中,孕育出第二代恒星。

    第二代恒星往往会从第一代中“继承”并生产更多的金属元素,再“遗传”给下一代。随着宇宙不断变“老”,金属的“雪球”越滚越大。今天新生恒星的金属含量比130亿年前的祖辈恒星高出200万倍。所以,金属含量越低的恒星,就代表着越早的宇宙进化阶段。

    这是一张大家都很熟悉的元素周期表,有没有人一看到它就觉得头大呢?天文学家非常人性化,他们发明了一张特别的元素周期表,我们把所有比氦重的元素全部称为金属,注意是所有比氦重的元素,不仅仅是我们日常概念中的金属,这些金属元素的总和,就叫作金属含量。

    正是因为这样,才有了《魔法炉》里那段十分经典的独白:“为了我们能够活着,数十亿、数百亿乃至数千亿的恒星死去了。我们血液里的铁、我们骨骼里的钙、我们每一次呼吸的氧,所有这些都是从地球诞生很久之前的星星的熔炉里炼制出来的。”

    第二代恒星往往会从第一代中“继承”并生产更多的金属元素,再“遗传”给下一代。随着宇宙不断变“老”,金属的“雪球”越滚越大。今天新生恒星的金属含量比130亿年前的祖辈恒星高出200万倍。所以,金属含量越低的恒星,就代表着越早的宇宙进化阶段。

    “受限于观测能力,现在可以‘够得着’的古老恒星,都是第二代恒星。”李海宁说。

    图片 8

    图片 9

    “受限于观测能力,现在可以‘够得着’的古老恒星,都是第二代恒星。”李海宁说。

    对贫金属星的研究有助于解开一系列关于围绕早期宇宙、元素起源、第一代恒星和银河系演化的科学问题,如金属元素是怎样在宇宙中产生和积累的、第一代恒星和超新星是什么样子的、银河系的形成和演化历史是怎样的。

    随着宇宙不断地变老,金属含量这个“雪球”也越滚越大,每一代新诞生的恒星,它身体里的金属含量都会比它的祖先上一代稍微多一点点。一直到今天,这些“小鲜肉”恒星们,它们已经继承了成千上万代恒星的遗产,所以它们体内的金属含量已经是130亿年前老祖宗的200万倍。如果有一天你恰巧碰到一个金属含量很低的恒星,那么恭喜,你看到了宇宙的极早期。

    这是一张大家都很熟悉的元素周期表,有没有人一看到它就觉得头大呢?天文学家非常人性化,他们发明了一张特别的元素周期表,我们把所有比氦重的元素全部称为金属,注意是所有比氦重的元素,不仅仅是我们日常概念中的金属,这些金属元素的总和,就叫作金属含量。

    对贫金属星的研究有助于解开一系列关于围绕早期宇宙、元素起源、第一代恒星和银河系演化的科学问题,如金属元素是怎样在宇宙中产生和积累的、第一代恒星和超新星是什么样子的、银河系的形成和演化历史是怎样的。

    贫金属星极为稀少,很难获得可细致研究的样本

    我想问大家一个问题,你们觉得我们能看到最早的恒星吗?由于限于我们现在的观测能力,第一代恒星对我们来说,就像黄帝尧舜一样,只是一个传说。而我们现在能够直接观测到的最古老的恒星,其实是它们的直系后代,这些恒星还来不及攒多少金属,所以我们叫贫金属星。

    图片 10

    贫金属星极为稀少,很难获得可细致研究的样本

    寻找贫金属星的历史可以追溯到上世纪80年代,当时主要依靠大规模巡天(测光或者低分辨率光谱观测)。但因为这类天体非常稀有,所以搜寻过程基本等同于大海捞针。尽管如此,到目前为止还是取得了一系列重要的成果。其中包括发现了金属含量超低的第二代恒星、金属含量不到太阳十万分之一的贫金属星;通过大样本贫金属星发现了银河系有两个晕成分;在近邻矮星系发现揭示了双中子星并合证据的贫金属星等。

    别看这个名字不怎么样,但是它们对于宇宙演化的意义可一点都不“贫”。如果说现在的宇宙有100岁,这些贫金属星出生的时候,宇宙还没有上学,所以在它们的身体里隐藏了许多宇宙“婴幼儿时期”的重要信息,这也是为什么天文学家亲切地称它们为“宇宙化石”。

    随着宇宙不断地变老,金属含量这个“雪球”也越滚越大,每一代新诞生的恒星,它身体里的金属含量都会比它的祖先上一代稍微多一点点。一直到今天,这些“小鲜肉”恒星们,它们已经继承了成千上万代恒星的遗产,所以它们体内的金属含量已经是130亿年前老祖宗的200万倍。如果有一天你恰巧碰到一个金属含量很低的恒星,那么恭喜,你看到了宇宙的极早期。

    寻找贫金属星的历史可以追溯到上世纪80年代,当时主要依靠大规模巡天(测光或者低分辨率光谱观测)。但因为这类天体非常稀有,所以搜寻过程基本等同于大海捞针。尽管如此,到目前为止还是取得了一系列重要的成果。其中包括发现了金属含量超低的第二代恒星、金属含量不到太阳十万分之一的贫金属星;通过大样本贫金属星发现了银河系有两个晕成分;在近邻矮星系发现揭示了双中子星并合证据的贫金属星等。

    “当恒星内部炽热的星光穿过外层较冷的大气时,会形成在特定波长产生吸收特征的吸收谱,每一条吸收线都隐藏着某种元素的独特信息。”李海宁说:“我们可以通过测量这些吸收线来破解保留在贫金属星大气中的古老气体成分。”

    关于我们人类生命元素的起源还有很多的疑问,比如说我们水里的铁、骨骼里的钙,第一次产生在宇宙是什么时候?宇宙早期的化学成分跟今天的我们之间,是不是有相似的地方?提取这些贫金属星的化学成分就成为我们获得答案的唯一途径。

    我想问大家一个问题,你们觉得我们能看到最早的恒星吗?由于限于我们现在的观测能力,第一代恒星对我们来说,就像黄帝尧舜一样,只是一个传说。而我们现在能够直接观测到的最古老的恒星,其实是它们的直系后代,这些恒星还来不及攒多少金属,所以我们叫贫金属星。

    “当恒星内部炽热的星光穿过外层较冷的大气时,会形成在特定波长产生吸收特征的吸收谱,每一条吸收线都隐藏着某种元素的独特信息。”李海宁说:“我们可以通过测量这些吸收线来破解保留在贫金属星大气中的古老气体成分。”

    困难的是,贫金属星的金属谱线非常弱,对于光谱分析技术要求较高,这也使得目前的观测手段无法获取过于暗弱的贫金属星的高分辨率光谱和分析结果,因此适合细致研究的贫金属星样本非常有限。

    如果现在让你去提取一颗恒星的化学成分,你打算怎么做呢?显然我们不能把星星搬回实验室或者办公室来研究,所以天文学家要用望远镜来观察它们。一说到观星,天文爱好者应该激动了,每个人的脑海里都会出现各种美轮美奂的星空。

    别看这个名字不怎么样,但是它们对于宇宙演化的意义可一点都不“贫”。如果说现在的宇宙有100岁,这些贫金属星出生的时候,宇宙还没有上学,所以在它们的身体里隐藏了许多宇宙“婴幼儿时期”的重要信息,这也是为什么天文学家亲切地称它们为“宇宙化石”。

    困难的是,贫金属星的金属谱线非常弱,对于光谱分析技术要求较高,这也使得目前的观测手段无法获取过于暗弱的贫金属星的高分辨率光谱和分析结果,因此适合细致研究的贫金属星样本非常有限。

    尽管难度巨大,贫金属星的重要性仍使其成为近20年来许多大型巡天项目的主要科学目标之一。现在很多国家都有正在进行和计划中的恒星考古计划。赵刚说:“中国以郭守敬望远镜巡天观测为契机,也在该领域逐步活跃起来,并为今后参与相关恒星考古项目奠定了良好的基础。”

    图片 11

    怎样提取一颗恒星的化学成分?

    尽管难度巨大,贫金属星的重要性仍使其成为近20年来许多大型巡天项目的主要科学目标之一。现在很多国家都有正在进行和计划中的恒星考古计划。赵刚说:“中国以郭守敬望远镜巡天观测为契机,也在该领域逐步活跃起来,并为今后参与相关恒星考古项目奠定了良好的基础。”

    海量恒星光谱的获取,对研究宇宙演化意义重大

    不过我眼中的星星跟大家想象的星空都不一样,这就是我看到的星星,这其实是一条二维的恒星光谱。你们看到的横向的每一层是我们眼睛中所能看到的不同颜色的星光,而这些竖线则是炙热的星光穿过较冷的外层大气时,在特定的波长产生的吸收。也就是说,这每一条暗线,都是某一个元素在星光里给我们留下的特定信息。

    关于我们人类生命元素的起源还有很多的疑问,比如说我们水里的铁、骨骼里的钙,第一次产生在宇宙是什么时候?宇宙早期的化学成分跟今天的我们之间,是不是有相似的地方?提取这些贫金属星的化学成分就成为我们获得答案的唯一途径。

    海量恒星光谱的获取,对研究宇宙演化意义重大

    2009年,我国建成世界上光谱获取率最高的光谱巡天望远镜——郭守敬望远镜,每次观测可以获得4000个天体光谱。

    图片 12

    如果现在让你去提取一颗恒星的化学成分,你打算怎么做呢?显然我们不能把星星搬回实验室或者办公室来研究,所以天文学家要用望远镜来观察它们。一说到观星,天文爱好者应该激动了,每个人的脑海里都会出现各种美轮美奂的星空。

    2009年,我国建成世界上光谱获取率最高的光谱巡天望远镜——郭守敬望远镜,每次观测可以获得4000个天体光谱。

    李海宁认为,郭守敬望远镜的一大优势就在于它能获取前所未有的海量恒星光谱,相当于为寻找贫金属星提供了一片无比广阔的恒星海洋,“大大提高了我们找到更多这类稀有天体的可能性。”

    给大家看一张图,是不是二维光谱和这个图有几分相似呢?这个图是人类的基因图谱。所以说恒星光谱隐藏了恒星的基因一点都不为过,可是我们该怎么来提取这些基因呢?这就要用到天文研究上更常见的一维光谱了。

    图片 13

    李海宁认为,郭守敬望远镜的一大优势就在于它能获取前所未有的海量恒星光谱,相当于为寻找贫金属星提供了一片无比广阔的恒星海洋,“大大提高了我们找到更多这类稀有天体的可能性。”

    “这个贫金属星亮源表的优势在于既大又亮,非常适合现有地面观测设备进行高分辨率后续观测。”李海宁进一步解释道,“大样本可以显著扩大现有贫金属星样本的数量,并减小统计研究的误差;亮源多则有利于获取这些贫金属星的运动学参数,从而对银河系晕的形成历史开展化学—运动学多维空间的研究。”

    图片 14

    不过我眼中的星星跟大家想象的星空都不一样,这就是我看到的星星,这其实是一条二维的恒星光谱。你们看到的横向的每一层是我们眼睛中所能看到的不同颜色的星光,而这些竖线则是炙热的星光穿过较冷的外层大气时,在特定的波长产生的吸收。也就是说,这每一条暗线,都是某一个元素在星光里给我们留下的特定信息。

    “这个贫金属星亮源表的优势在于既大又亮,非常适合现有地面观测设备进行高分辨率后续观测。”李海宁进一步解释道,“大样本可以显著扩大现有贫金属星样本的数量,并减小统计研究的误差;亮源多则有利于获取这些贫金属星的运动学参数,从而对银河系晕的形成历史开展化学—运动学多维空间的研究。”

    由于仪器分布,现有贫金属星高分辨率观测样本具有显著的集中在南半球的选择效应,郭守敬望远镜贫金属星样本的出现,将有望解决南北半球样本分布不均衡的问题。

    看到这个光谱大家有什么感觉?很单调,甚至有点密集恐惧的味道。不过我很负责任地告诉你们,这已经是我找到最好看的一条一维光谱了。千万别小看它,它的作用非常的大。

    图片 15

    由于仪器分布,现有贫金属星高分辨率观测样本具有显著的集中在南半球的选择效应,郭守敬望远镜贫金属星样本的出现,将有望解决南北半球样本分布不均衡的问题。

    后续高分辨率光谱观测与研究正在进行中,并已取得一系列重要发现。科研人员首次系统搜寻并研究锂元素丰度异常超高的贫金属星,构建了目前最大的此类样本,并首次在银河系场星中发现锂元素丰度超高的亚巨星;发现了第五颗碳氮氧钠镁等多种元素异常超丰的超贫金属星(金属含量不到太阳的万分之一),结合超新星理论模型研究分析,为此类天体的前身星性质提供了重要的观测限制等。

    我们通过测量这个里面谱线的强度,不仅可以知道这颗恒星制造了哪些元素,制造了多少,通过结合它外层大气的情况,我们甚至可以知道这颗恒星的年龄、体重、出生地,以及最近是不是和附近的恒星发生过激烈的冲突。所以说,恒星光谱是我们刺探恒星的秘密,提取行星DNA的一大神器。

    给大家看一张图,是不是二维光谱和这个图有几分相似呢?这个图是人类的基因图谱。所以说恒星光谱隐藏了恒星的基因一点都不为过,可是我们该怎么来提取这些基因呢?这就要用到天文研究上更常见的一维光谱了。

    后续高分辨率光谱观测与研究正在进行中,并已取得一系列重要发现。科研人员首次系统搜寻并研究锂元素丰度异常超高的贫金属星,构建了目前最大的此类样本,并首次在银河系场星中发现锂元素丰度超高的亚巨星;发现了第五颗碳氮氧钠镁等多种元素异常超丰的超贫金属星(金属含量不到太阳的万分之一),结合超新星理论模型研究分析,为此类天体的前身星性质提供了重要的观测限制等。

    郭守敬望远镜贫金属星项目是国际上目前效率最高的同类搜寻计划,项目的实施为国内外天文界提供了前所未有的大样本贫金属星。“基于这些样本与盖亚卫星观测结合形成多维大样本数据,我们将迎来恒星考古的新时代。”赵刚说。

    也正是因为这个原因,我在博士期间选择了它作为我的研究方向。我还记得第一次跟我的导师讨论研究课题的时候,他给了我两条光谱让我选,你是要做和太阳差不多的年轻恒星呢?还是要去研究贫金属的古老恒星?

    图片 16

    郭守敬望远镜贫金属星项目是国际上目前效率最高的同类搜寻计划,项目的实施为国内外天文界提供了前所未有的大样本贫金属星。“基于这些样本与盖亚卫星观测结合形成多维大样本数据,我们将迎来恒星考古的新时代。”赵刚说。

    图片 17

    看到这个光谱大家有什么感觉?很单调,甚至有点密集恐惧的味道。不过我很负责任地告诉你们,这已经是我找到最好看的一条一维光谱了。千万别小看它,它的作用非常的大。

    吴月辉

    我选了贫金属星,而且当时我对我自己这个决定非常满意。我很好奇这些古老的星星究竟隐藏了多少宇宙早期的秘密,还有一个很重要的原因,因为我知道恒星光谱分析当中,最耗时费力、最容易让人崩溃的就是测量谱线。

    我们通过测量这个里面谱线的强度,不仅可以知道这颗恒星制造了哪些元素,制造了多少,通过结合它外层大气的情况,我们甚至可以知道这颗恒星的年龄、体重、出生地,以及最近是不是和附近的恒星发生过激烈的冲突。所以说,恒星光谱是我们刺探恒星的秘密,提取行星DNA的一大神器。

    吴月辉

    贫金属星的光谱里线这么少,我可以省掉很多测量谱线的时间。不过很快我发现我的如意算盘打错了,因为像太阳这样年轻的恒星很好找,但是贫金金属的古老恒星非常难求。到底有多难找?我带给你们看看。

    也正是因为这个原因,我在博士期间选择了它作为我的研究方向。我还记得第一次跟我的导师讨论研究课题的时候,他给了我两条光谱让我选,你是要做和太阳差不多的年轻恒星呢?还是要去研究贫金属的古老恒星?

    图片 18

    图片 19

    比如在太阳附近随便划拉一把,能找到这么多的恒星,可是蓝色的全部都是年轻的恒星,只有红色的才是我要找的贫金属星。

    我选了贫金属星,而且当时我对我自己这个决定非常满意。我很好奇这些古老的星星究竟隐藏了多少宇宙早期的秘密,还有一个很重要的原因,因为我知道恒星光谱分析当中,最耗时费力、最容易让人崩溃的就是测量谱线。

    图片 20

    贫金属星的光谱里线这么少,我可以省掉很多测量谱线的时间。不过很快我发现我的如意算盘打错了,因为像太阳这样年轻的恒星很好找,但是贫金金属的古老恒星非常难求。到底有多难找?我带给你们看看。

    红色在哪里?只有这些,我第一次知道的时候,也是我第一次切身体会到什么叫作“整个人都不好了”!不过我也还算走运,遇到了一个很得力的助手,就是我们国家设计并且建造的郭守敬望远镜,它是一个不折不扣的观星能手,它只要眨一下眼睛,就能拍下3000多颗恒星的光谱。所以,它花了5年的时间,获得了超过900万条的天体光谱,我当然也趁机大捞了一把。

    图片 21

    图片 22

    比如在太阳附近随便划拉一把,能找到这么多的恒星,可是蓝色的全部都是年轻的恒星,只有红色的才是我要找的贫金属星。

    正是基于这一次贫金属星横财,我得到了我的第一个贫金属星惊喜。我发现了一颗极其古老的超级贫金属星,这颗星的年龄差不多有130亿岁,老的几乎和宇宙不相上下。在当时的恒星界,它的年老程度已经排进了世界前20。

    图片 23

    可是很奇妙的是,我在这颗恒星的光谱里面居然探测到了氢、碳、钙、铁,这些元素可都是对我们人体生命中非常重要的元素。所以,我再一次意识到,我们身体里面的这些元素,远比我们整个人类的进化历史要古老的太多太多。

    红色在哪里?只有这些,我第一次知道的时候,也是我第一次切身体会到什么叫作“整个人都不好了”!不过我也还算走运,遇到了一个很得力的助手,就是我们国家设计并且建造的郭守敬望远镜,它是一个不折不扣的观星能手,它只要眨一下眼睛,就能拍下3000多颗恒星的光谱。所以,它花了5年的时间,获得了超过900万条的恒星光谱,我当然也趁机大捞了一把。

    因为我研究了这些贫金属星,它都很遥远,如果我们仔细去观察它的光谱,就需要用到世界上最大的望远镜。大家猜一猜,在北半球最适合天文观测的地方在哪里?对,就是在夏威夷。

    图片 24

    说到夏威夷你们会想到什么?阳光、沙滩、海浪、摇曳的草裙舞,我第一次去观测的时候也是带着这样的憧憬出发的,不过当我从大本营下车的时候,我惊呆了!

    正是基于这一次贫金属星横财,我得到了我的第一个贫金属星惊喜。我发现了一颗极其古老的超级贫金属星,这颗星的年龄差不多有130亿岁,老的几乎和宇宙不相上下。在当时的恒星界,它的年老程度已经排进了世界前20。

    图片 25

    可是很奇妙的是,我在这颗恒星的光谱里面居然探测到了氢、碳、钙、铁,这些元素可都是对我们人体生命中非常重要的元素。所以,我再一次意识到,我们身体里面的这些元素,远比我们整个人类的进化历史要古老的太多太多。

    我是不是到了一个假的夏威夷?于是我想我可能还是做一个安静的天文学家好了。通常我们需要在刚才这个海拔2800米的大本营适应一到两个晚上,然后就可以开赴4200米的莫纳克亚山顶进行观测了。

    因为我研究了这些贫金属星,它都很遥远,如果我们仔细去观察它的光谱,就需要用到世界上最大的望远镜。大家猜一猜,在北半球最适合天文观测的地方在哪里?对,就是在夏威夷。

    图片 26

    说到夏威夷你们会想到什么?阳光、沙滩、海浪、摇曳的草裙舞,我第一次去观测的时候也是带着这样的憧憬出发的,不过当我从大本营下车的时候,我惊呆了!

    这个山头上聚集了世界上许多高端、大气、上档次的望远镜,其中一个就是我最经常使用的昴星团望远镜。这个望远镜的口径有8米,可能这么说你不会知道它有多大,请注意左下角,这两个看不清的东西是两辆SUV,所以可以想象一下,这个望远镜是一个怎样的庞然大物。

    图片 27

    图片 28

    我是不是到了一个假的夏威夷?于是我想我可能还是做一个安静的天文学家好了。通常我们需要在刚才这个海拔2800米的大本营适应一到两个晚上,然后就可以开赴4200米的莫纳克亚山顶进行观测了。

    我们进行观测的时候,通常会从当天的下午5点一直到第二天早上的7点,都在这个叫作“观测室”的地方待着。我们在这里控制望远镜,挑选要观测哪个星,并且检查我们得到的观测数据。

    图片 29

    不要看这个房间似乎不怎么豪华,它的价格可是高到让你惊讶——每晚8万美元。我第一次去的时候也觉得特别新奇,这么贵的地方我得好好转一转。可是我发现了,我在房间里溜达的时候,一位观测助手老是盯着我看,我当时很纳闷。

    这个山头上聚集了世界上许多高端、大气、上档次的望远镜,其中一个就是我最经常使用的昴星团望远镜。这个望远镜的口径有8米,可能这么说你不会知道它有多大,请注意左下角,这两个看不清的东西是两辆SUV,所以可以想象一下,这个望远镜是一个怎样的庞然大物。

    后来我一问才知道,头一天晚上有一个美国小伙子,他也是第一次来观测,他很兴奋,在海拔4200米的观测室里,他有一次突然很使劲地起立,导致他后半夜的观测都是躺着完成的。

    图片 30

    也就是在这里,我遇到了我第二个贫金属星惊喜。有一次观测,碰到第二天的天气不是特别好,看不见任何的星星,所以只能停止工作,开始聊天。到了凌晨3点钟,我感觉到了有点要尬聊的迹象,我想一晚上8万美元就这么浪费了,实在是太可惜了,我们来玩一下前一天的光谱数据吧。

    我们进行观测的时候,通常会从当天的下午5点一直到第二天早上的7点,都在这个叫作“观测室”的地方待着。我们在这里控制望远镜,挑选要观测哪个星,并且检查我们得到的观测数据。

    图片 31

    不要看这个房间似乎不怎么豪华,它的价格可是高到让你惊讶——每晚8万美元。我第一次去的时候也觉得特别新奇,这么贵的地方我得好好转一转。可是我发现了,我在房间里溜达的时候,一位观测助手老是盯着我看,我当时很纳闷。

    在分析过程当中,我发现有一条光谱有点问题。大家注意看左下角6700埃的地方,这本来不应该有任何谱线。我们进行了反复地排查,最后证明这不是数据的错误,而是一条真实存在的、非常强的Li吸收线。

    后来我一问才知道,头一天晚上有一个美国小伙子,他也是第一次来观测,他很兴奋,在海拔4200米的观测室里,他有一次突然很使劲地起立,导致他后半夜的观测都是躺着完成的。

    可能有人要问了,不就是探测到一个Li吗,有必要那么激动吗?Li元素对于我们人体来说,它是一个微量元素,但它也是非常重要的生命动力元素,它是唯一一种产生于宇宙大爆炸的金属元素。

    地球上的Li都来自大爆炸的最初3分钟

    虽然说我们的恒星内部其实可以合成Li,但是恒星合成的Li寿命非常的短,几乎不能够存留多久。所以说现在我们手机里供能的Li和新能源汽车电池里的Li,甚至是地球上最大Li矿的Li,全部都来自于大爆炸的最初3分钟。

    也就是在这里,我遇到了我第二个贫金属星惊喜。有一次观测,碰到第二天的天气不是特别好,看不见任何的星星,所以只能停止工作,开始聊天。到了凌晨3点钟,我感觉到了有点要尬聊的迹象,我想一晚上8万美元就这么浪费了,实在是太可惜了,我们来玩一下前一天的光谱数据吧。

    对于恒星而言,Li元素也是一个微量元素,所以通常我们在光谱当中,只能看见很弱的Li吸收线,或者是根本看不到。而经典的理论和以往观测数据也告诉我们说,尤其贫金属星的Li含量极低,所以这才解释了,为什么我在贫金属星光谱里看到这么强的Li吸收线会如此意外了。

    图片 32

    图片 33

    在分析过程当中,我发现有一条光谱有点问题。大家注意看左下角6700埃的地方,这本来不应该有任何谱线。我们进行了反复地排查,最后证明这不是数据的错误,而是一条真实存在的、非常强的Li吸收线。

    在后来的一年半的时间里面,我们又陆续找到了好几颗这样奇怪的贫金属星,这些家伙的Li含量远比正常值要高出几十倍,甚至上百倍。

    可能有人要问了,不就是探测到一个Li吗,有必要那么激动吗?Li元素对于我们人体来说,它是一个微量元素,但它也是非常重要的生命动力元素,它是唯一一种产生于宇宙大爆炸的金属元素。

    当我发现这个事实的时候,我的第一反应是我可以挑战经典理论了。可是有一个做理论的合作者告诉我说你别得意太早了,还有其他的可能性来解释这些Li从哪里来。

    虽然说我们的恒星内部其实可以合成Li,但是恒星合成的Li寿命非常的短,几乎不能够存留多久。所以说现在我们手机里供能的Li和新能源汽车电池里的Li,甚至是地球上最大Li矿的Li,全部都来自于大爆炸的最初3分钟。

    图片 34

    对于恒星而言,Li元素也是一个微量元素,所以通常我们在光谱当中,只能看见很弱的Li吸收线,或者是根本看不到。而经典的理论和以往观测数据也告诉我们说,尤其贫金属星的Li含量极低,所以这才解释了,为什么我在贫金属星光谱里看到这么强的Li吸收线会如此意外了。

    比如说这颗贫金属星的边上住了一个邻居,它很喜欢收藏Li,贫金属星靠近它的时候,顺便顺走了一点;或者是有一颗带了很多Li的小天体,恰巧经过这颗贫金属星,被它一口吃进了肚子里。

    图片 35

    我带着非常忐忑的心情,把我所有能用的数据翻了一个底朝天,不过结果很好,没有任何证据支持他们所说的这些过程。这下我很高兴,因为我终于可以给观测学家制造一点麻烦了。很快,我们的发现被Science News报道了,为此我还高兴了好几天。

    在后来的一年半的时间里面,我们又陆续找到了好几颗这样奇怪的贫金属星,这些家伙的Li含量远比正常值要高出几十倍,甚至上百倍。

    我以前总是开玩笑说,这些贫金属星都是一些忧郁的小星星,因为它们所缺乏的Li元素,不仅可以造电池,还是一种抑制抑郁症和缓解情绪的主要药物成分。现在这些贫金属星突然得到了这么大一批Li,它们的心情会好多了吗?我不知道,但是我能确定理论学家该郁闷一阵子了。

    当我发现这个事实的时候,我的第一反应是我可以挑战经典理论了。可是有一个做理论的合作者告诉我说你别得意太早了,还有其他的可能性来解释这些Li从哪里来。

    我和贫金属星相伴已经有十年了,最开始的时候我给自己定了一个小目标:我处理一两百颗恒星就可以了。但是十年下来,我处理了近千万颗恒星的数据,测量了上亿条谱线的强度。

    图片 36

    今天我知道了,即使在最古老的恒星当中,我们也能探测到对于人类生命来说非常重要的氢、氦、碳、氮、氧、钙、铁、锂等等元素,而我们之前一直以为只能在地球上合成的磷,最近几年也在近百亿岁的古老恒星当中被发现了。

    比如说这颗贫金属星的边上住了一个邻居,它很喜欢收藏Li,贫金属星靠近它的时候,顺便顺走了一点;或者是有一颗带了很多Li的小天体,恰巧经过这颗贫金属星,被它一口吃进了肚子里。

    所以我仍然很好奇,我们的宇宙究竟在什么时候达成了第一次化学上的成熟,形成了生命?为什么总有人说,只能在像太阳这样的年轻恒星附近才能发现有生命的行星系统?会不会在宇宙的极早期就已经形成了我们所不知道的最早的生命呢?

    我带着非常忐忑的心情,把我所有能用的数据翻了一个底朝天,不过结果很好,没有任何证据支持他们所说的这些过程。这下我很高兴,因为我终于可以给观测学家制造一点麻烦了。很快,我们的发现被Science News报道了,为此我还高兴了好几天。

    当然,所有这些谜团都需要更多的贫金属星来帮我们解答,而支持我在这条通往130亿年前的宇宙道路上继续走下去的,还有一点,就是我一直相信,这些看似不起眼的年老的小星星,一定会在未来的某个时间带给我出乎意料的新惊喜。

    我以前总是开玩笑说,这些贫金属星都是一些忧郁的小星星,因为它们所缺乏的Li元素,不仅可以造电池,还是一种抑制抑郁症和缓解情绪的主要药物成分。现在这些贫金属星突然得到了这么大一批Li,它们的心情会好多了吗?我不知道,但是我能确定理论学家该郁闷一阵子了。

    “SELF格致论道”讲坛是中国科学院全力推出的科学文化讲坛,致力于精英思想的跨界传播,由中国科学院计算机网络信息中心和中国科学院科学传播局联合主办,中国科普博览承办。SELF是 Science, Education, Life, Future的缩写,旨在以“格物致知”的精神探讨科技、教育、生活、未来的发展。关注微信公众号SELFtalks获取更多信息。

    与贫金属星相伴的十年

    本文出品自“SELF格致论道讲坛”公众号(SELFtalks),转载请注明公众号出处,未经授权不得转载。

    我和贫金属星相伴已经有十年了,最开始的时候我给自己定了一个小目标:我处理一两百颗恒星就可以了。但是十年下来,我处理了近千万颗恒星的数据,测量了上亿条谱线的强度。

    今天我知道了,即使在最古老的恒星当中,我们也能探测到对于人类生命来说非常重要的氢、氦、碳、氮、氧、钙、铁、锂等等元素,而我们之前一直以为只能在地球上合成的磷,最近几年也在近百亿岁的古老恒星当中被发现了。

    所以我仍然很好奇,我们的宇宙究竟在什么时候达成了第一次化学上的成熟,形成了生命?为什么总有人说,只能在像太阳这样的年轻恒星附近才能发现有生命的行星系统?会不会在宇宙的极早期就已经形成了我们所不知道的最早的生命呢?

    当然,所有这些谜团都需要更多的贫金属星来帮我们解答,而支持我在这条通往130亿年前的宇宙道路上继续走下去的,还有一点,就是我一直相信,这些看似不起眼的年老的小星星,一定会在未来的某个时间带给我出乎意料的新惊喜。

    本文经授权转载自《SELF格致论道讲坛》微信公众号

    本文由金莎娱乐发布于科学,转载请注明出处:窥探宇宙最古远的星河,古老恒星上有化学

    关键词: