快捷搜索:

您的位置:金莎娱乐 > 科学 > 宁波材料所在石墨烯基电磁屏蔽材料研究方面取

宁波材料所在石墨烯基电磁屏蔽材料研究方面取

发布时间:2019-07-13 01:16编辑:科学浏览(182)

    随着现代电子工业的快速发展,各种无线通信系统和高频电子器件数量急剧增加,内部芯片密集化程度逐渐提高,导致电磁干扰现象和电磁污染问题日益突出,不仅在通信领域中对信号的产生、传播和接收造成了极大的影响,而且给人类社会的生产与生活带来了不容忽视的危害。为了有效地抑制电磁干扰和电磁污染,设计并制备高效电磁屏蔽材料已成为一个迫切需要解决的问题。石墨烯是碳原子以sp2杂化轨道呈蜂巢晶格排列构成的单层二维晶体,自2004年被曼切斯特大学教授Geim团队报道后引起了科学家的广泛关注,其中优异的导电性能使其在电磁屏蔽领域极具发展潜力。

    随着现代电子工业的快速发展,人类已经进入了电子信息化时代,越来越多的电子和电器设备已经进入社会的各个角落,但是这些电子电器设备在运行过程中会产生一定的电磁波,不仅会对周边的电子电器设备产生一定的电磁干扰,同时也会对人类的身体产生一定的电磁辐射危害。为了有效地抑制电磁干扰和电磁辐射危害,电磁屏蔽材料的研究显得尤为重要。中国科学院宁波材料技术与工程研究所高分子事业部研究员郑文革团队一直致力于高效电磁屏蔽材料的开发,前期已经在石墨烯基电磁屏蔽材料的制备以及性能研究方面取得一系列进展(ACS Applied Materials & Interfaces, 2011, 3, 918; ACS Applied Materials & Interfaces, 2013, 5, 2677; ACS Applied Materials & Interfaces, 2013, 5, 11383; Advanced Functional Materials, 2014, 24, 4542; RSC Advances, 2015, 5, 24342; Carbon, 2016, 100, 375; Carbon, 2016, 102, 154; ACS Applied Materials & Interfaces, 2016, 8, 8050)。近期,该团队又在石墨烯基电磁屏蔽材料的结构设计与性能研究方面取得新进展。

    随着现代电子工业的快速发展,各种高集成和高功率无线通信系统和电子器件数量急剧增加,导致电磁干扰和电磁污染问题日益突出,不仅在通信领域中对信号的产生、传播和接收造成了极大的影响,而且给人类社会的生产与生活,尤其是人类身体健康带来了不容忽视的危害。联合国人类环境会议早在1969年就将电磁辐射列为继水、大气、噪声污染之后的第四大公害。电磁屏蔽材料是一类能够通过吸收和反射等方式来衰减电磁波能量传播以有效抑制电磁干扰和污染的功能材料。中国科学院宁波材料技术与工程研究所高分子事业部研究员郑文革团队一直致力于高效电磁屏蔽材料的开发,前期已经在电磁屏蔽材料的制备以及性能的研究方面取得一系列进展。近期,该团队又在新型电磁屏蔽材料的设计和制备方面取得进展。

    信息时代电子电气设备的迅猛发展在给人们带来方便的同时,也产生了大量的负面效应,如电磁信息泄露、电磁环境污染和电磁干扰等新的环境污染问题。高性能电磁波屏蔽材料已成为解决电磁波污染的关键技术。随着高频高速5G时代的到来以及可穿戴设备的发展,对电磁屏蔽材料提出了更高的要求。金属材料虽具有良好的电磁屏蔽性能,但其密度大、易腐蚀等特点限制了其进一步应用。因此,发展高效、轻质、柔性、耐腐蚀金属基电磁波屏蔽材料是一项重大挑战。

    近期,中国科学院宁波材料技术与工程研究所高分子事业部郑文革团队也在石墨烯基电磁屏蔽材料研究方面取得系列进展。首先,考虑到“以石墨烯片层为构筑单元来直接组装构建结构有序的石墨烯基宏观材料有利于最大程度地发挥石墨烯片层优异的导电性能”,研究人员通过“高温石墨化处理氧化石墨烯薄膜”的方法制备出了具有紧密堆积层状结构的宏观石墨烯薄膜,其中石墨化处理目的是分解GO片层含氧基团并对其结构缺陷进行有效修复,最后所得石墨烯薄膜具有很高的热导率、电导率、电磁屏蔽效能以及很好的柔韧性,厚度仅为~8μm的样品的室温平面热导率高达~1100W/m·K,平面电导率高达~1000S/cm,在X波段上屏蔽效能接近~20dB,相关结果发表在Advanced Functional Materials, 2014, 24:4542。近期,研究人员的研究还表明在石墨烯薄膜中引入适当的微孔结构可以大大增强电磁波在微孔内部的多重反射衰减,从而进一步提升薄膜的电磁屏蔽性能,相关工作发表在Carbon,2016,102:154。

    研究人员设计了一种具有夹层结构的高强度柔性聚合物/石墨烯复合薄膜,并探索了锯齿形折叠结构对薄膜电磁屏蔽的影响。高强度柔性聚合物/石墨烯复合薄膜是以普通无纺布作为增强夹层,并以聚合物/石墨烯复合物作为导电涂层制备而得的。电磁屏蔽测试结果显示对薄膜样品进行锯齿形折叠可以增强其电磁屏蔽性能(特别是对于具有较高电导率的薄膜),其中较小的锯齿夹角以及较长的锯齿边长使得锯齿形折叠对薄膜电磁屏蔽增强越加明显,这主要是因为较小的锯齿夹角以及较长的锯齿边长可以使得更大面积的材料参加电磁屏蔽,同时增强锯齿对电磁波的多重反射衰减。同时,通过对锯齿结构进行简单的拉伸或压缩就可以实现对薄膜电磁屏蔽性能的有效调控。相关结果发表于国际期刊Carbon,2017,113,55,并申请中国发明专利201610850306.5。

    户外全天候电子设备如信号站、户外电磁装置等,电磁屏蔽材料除了需满足“高效、轻质、低反射”的要求外,对其它性能如防腐、自清洁性能也提出了新的期望。以电磁屏蔽材料为基础构建超疏水表面,不仅能有效防止空气中酸性介质渗入,提高抗腐蚀能力,还可以赋予其自清洁功能。因此,系统、科学地对电磁屏蔽材料进行结构设计,开展具有超疏水表面新型多功能电磁屏蔽材料的研究,对相关电子设备的安全长效使用具有重要的现实意义。研究人员以具有低表面能的聚偏氟乙烯作为基体,选择石墨烯和多壁纳米碳管作为复合导电填料,并通过水蒸气诱导相分离方法在具有粗糙表面结构的聚酯基无纺布上面制备得到了具有超疏水表面多孔聚合物复合材料。石墨烯和多壁纳米碳管可以在PVDF基体中形成有效的导电网络,具有粗糙表面结构的聚酯基无纺布以及墨烯和多壁纳米碳管、球晶结构微孔结构的存在可以在PVDF表面共同构造多级粗糙结构。所制备的聚合物复合材料具有优异的屏蔽效能,以及超疏水特性(接触角高达155°左右);同时该聚合物复合材料在长时间的紫外照射下仍具有很好的性能稳定性。相关结果发表于国际期刊Composites Science and Technology, 2018, 158, 86-93。

    近日,香港中文大学教授廖维新,中国科学院深圳先进技术研究院汪正平、孙蓉团队在国际纳米材料期刊Small上发表了最新研究成果Anticorrosive, ultra-light and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding(《用于高性能电磁屏蔽的耐腐蚀轻质柔性碳包覆金属纳米线杂化泡棉》)。科研人员采用水热法和高温退火制备了碳包覆银纳米线杂化海绵,该Ag@C海绵具有超轻(极低的密度3.2 mg/cm3)、良好的力学性能(可弯折、扭曲,以及在90%压缩应变下完全回复)和优异的电磁波屏蔽性能(在X-band和Ku-band高于70 dB)。更为重要的是,由于壳层碳对银线的有效包覆及其特殊的多孔结构,Ag@C海绵表现出超疏水和优异的耐腐蚀性能(在pH=0的硝酸溶液下浸泡7天屏蔽性能无明显变化)。该杂化海绵结合了金属优异的屏蔽性能和碳材料的轻质、柔性和耐腐蚀等优点,综合性能远优于传统金属材料和普通碳材料。该工作为开发高效、轻质、柔性、耐腐蚀金属基电磁屏蔽材料提供了新的设计思路。香港中文大学博士生万艳君为论文第一作者,廖维新、孙蓉为论文的共同通讯作者,团队成员研究员朱朋莉和于淑会参与了该项研究工作。

    与石墨烯薄膜类似,研究人员以先前采用非溶剂诱导相分离和热亚胺化相结合方法所制备出的聚酰亚胺/石墨烯复合微发泡薄膜材料为先驱体(相关工作发表在RSC Advances,2016,5:24342),利用高温碳化和石墨化的方法制备出了具有微孔结构的超薄碳膜,其中石墨烯的存在可以稳定微孔结构并加速薄膜石墨化进程,微孔结构的存在可以增强电磁屏蔽效能,结果显示厚度仅为~24 μm的样品在X波段上屏蔽效能高达~24 dB,继续提升样品厚度至~73 μm可进一步提高屏蔽效能到~51dB,同时该超薄碳膜还具有极高的热稳定性(空气中分解温度高达550oC),相关工作发表在Carbon,2016,100:375。

    研究人员探索了多层复合结构(梯度结构 中空三明治结构)对聚合物/石墨烯复合材料电磁屏蔽性能的影响。首先,通过对不同石墨烯含量的聚合物/石墨烯复合泡沫进行自由叠加组合可以制备出不同梯度结构的复合材料,结果表明:①梯度结构对复合材料的电磁屏蔽性能影响较小,但却可以大幅提升复合材料与空气之间的波阻抗,进而增强对电磁波的吸收性能;②吸波性能最强的结构设计是具有a-b-c结构,而对电磁波反射最强的结构设计是c-b-a结构。另外,将透波材料夹在两层聚合物/石墨烯复合泡沫之间可以得到一种具有中空三明治结构的复合材料,结果表明:①中空三明治结构可以大幅提高复合材料的屏蔽性能,但是主要原因是增强了材料对电磁波的反射;②三明治结构对复合材料屏蔽效能的提高量与其中间透波层的厚度有关,当厚度为对应频段1/4波长时,其增幅最大。该研究对于设计具有高屏蔽和吸波性能的聚合物基电磁屏蔽材料具有较大的参考价值,相关结果发表于国际期刊Composites Science and Technology, 2017, DOI: 10.1016/j.compscitech.2016.12.002,并申请中国发明专利201610919451.4和201610919480.0。

    生物质是一种环境友好的可持续和可再生资源,某些生物质通过碳化可以获得具有理想电磁屏蔽性能的多孔碳材料,但直接使用原始生物质作为碳化前体可能会限制最终材料的结构多样性。实际上,生物质材料可以加工成具有不同结构的各种生物基衍生物产品,并且它们可以适用于构建具有高性能的新型电磁屏蔽材料。研究人员简单地通过木浆织物的碳化来制备高导电宏观碳网格材料,所得到的样品在厚度为~0.3mm左右不仅表现出优异的屏蔽效能(~20.3-45.5dB)(与其碳化温度呈正相关或与其网格尺寸呈负相关),而且由于网格的存在,具有透光率在~15%-56%之间半透明特性。此外,双层MCG材料可以在恒定厚度下通过微小平移运动改变网格的交错度来方便地调节材料的屏蔽性能,对可调电磁波衰减器件的设计具有参考意义。相关结果发表于国际期刊Carbon, 2018, 139, 271-278。

    此外,研究团队将廉价易得的纤维素纤维与氧化石墨烯相结合,通过调控二者比例、退火温度及气氛,开发了超轻(密度仅为2.83 mg/cm3)且力学性能优异的高效电磁屏蔽气凝胶(Carbon, 2017; 115: 629-639)。在该研究基础上,结合团队前期石墨烯复合材料的研究(Composites Science and Technology, 2016; 122: 27-35(Highly Cited Paper, Web of Science);RSC Advances, 2016, 6: 56589-56598;Composites Science and Technology, 2017; 141: 48-55),团队还发展了一种掺杂石墨烯纸,通过对选取的大尺寸石墨烯进行碘掺杂,一方面大尺寸石墨烯具有较好的共轭结构,有利于提高其载流子传输;另一方面碘掺杂进一步提高了其载流子密度。因此,该掺杂石墨烯纸表现出优异的电磁波屏蔽性能(厚度仅为12.5微米,屏蔽效能高达52.2 dB)且力学性能相比于未掺杂石墨烯纸无明显下降(Carbon, 2017; 122: 74-81)。该研究工作为开发高性能石墨烯基屏蔽膜提供了新的方法。

    除上述研究之外,研究人员还以聚氨酯海绵为基体,并在其内部孔结构表面涂覆石墨烯制备了具有优异压缩性能的石墨烯复合泡沫,该石墨烯复合泡沫具有优异的综合电磁屏蔽性能;同时利用压缩过程可以改变石墨烯复合泡沫内部孔结构的比表面积,从而改变电磁波在孔内部的多重反射衰减情况,实现在一定范围内对石墨烯复合泡沫的电磁屏蔽性能进行有效的调控,相关结果发表在ACS Applied Materials & Interfaces, 2016, DOI: 10.1021/acsami.5b11715。

    上述工作得到了国家自然科学基金(51603218、51473181、51573202)、宁波市自然科学基金(2016A610269)和中国博士后科学基金(2015M570531)的大力资助。

    上述工作得到了国家自然科学基金(51603218、51473181、51573202)的大力资助。

    相关工作得到了国家重点研发专项(2017YFB0406300)、香港研究资助局(T23-407/13-N)、先进电子封装材料广东省创新团队、广东省高密度电子封装关键材料重点实验室(2014B030301014)等项目的资助。

    上述工作得到了中国博士后科学基金(2015M570531)以及国家自然科学基金(51473181,61274110)的大力资助。

    图片 1

    图片 2

    论文链接

    图片 3

    图1. 高强度柔性聚合物/石墨烯复合薄膜以及锯齿形折叠结构示意图

    图1 具有超疏水表面多孔聚合物复合材料的制备过程示意图

    图片 4

    图1. 石墨烯薄膜制备过程示意图;石墨烯薄膜的电磁屏蔽性能;石墨烯薄膜的导热性能以及与其它材料的比较结果。

    图片 5

    图片 6

    图1 高性能电磁屏蔽碳包覆银纳米线杂化海绵的制备:Ag@C的制备示意图;碳化后杂化海绵示意图及实物图;不同形状的杂化海绵,表现出优异的力学性能;杂化海绵屏蔽电磁波原理示意图。

    图片 7

    图2. 不同多层复合结构的示意图以及对电磁屏蔽的影响结果

    图2 高导电宏观碳网格材料的制备过程示意图

    图片 8

    图2. 电磁屏蔽过程中电磁波在石墨烯薄膜微孔结构中的多重反射衰减示意图。

    图2 杂化海绵形貌结构及其在不同厚度和频段下的电磁屏蔽性能

    图片 9

    图片 10

    图3.超薄碳膜的制备过程示意图;超薄碳膜的电磁屏蔽性能;超薄碳膜在空气氛围中的TGA曲线。

    图3 经硝酸溶液浸泡7天后杂化海绵的屏蔽性能和形貌结构

    本文由金莎娱乐发布于科学,转载请注明出处:宁波材料所在石墨烯基电磁屏蔽材料研究方面取

    关键词: